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I. It is well known that when a pulse of gamma quanta is emitted into the air, currents 
of Compton electrons are generated in the latter, and they in turn excite electromagnetic 
fields. If the gamma yield is isotropic and the surrounding medium is homogeneous, then the 
only nonzero component of the electromagnetic field is the radial electric field, which 
exists only in the current zone. The actual deviations from spherical symmetry in the cur- 
rent system result in the generation of other components of the electromagnetic field and 
in the radiation of electromagnetic waves. The influence of the various factors responsible 
for asymmetry of the currents has been investigated in several papers. For example, the in- 
fluence of asymmetry of the gamma output has been studied in [i, 2], the influence of the 
underlying surface in [3, 4], and the influence of external fields in [5-7]. The emission 
of gamma quanta into an inhomogeneous atmosphere has been investigated in [8], in which are 
given the results of numerical calculations of the excited fields. 

A direct comparison of the results of these studies shows that in the case where the 
effect evolves near the earth's surface the associated current asymmetry yields the maximum 
(in amplitude of the transverse fields) effects. With an increase in the height of the 
source h the influence of the underlying surface diminishes. This trend can be witnessed, 
for example, in the results of [4]. Thus, if expression (2.6) in that paper is used and the 
Compton electron currents are substituted for j as the upper bound of the radiated field 
(actually the radial currents are smaller due to the compensating contribution of conduction 
currents in them, hence the upper bound) we find that the amplitude of the radiated field de- 
creases with increasing h approximately as axp (-~m/Zy), where Pm is the minimum value of the 
lower limit in the integral (2.6) in [4], equal to h, and Z 7 is the mean free path of the 
gamma quanta, on the other hand, as will be shown presently, the amplitude of the trans- 
verse fields, whose radiation is associated With the inhomogeneity of the atmosphere, de- 
pends weakly on the height of the source, and so, beginning with a certain height, this ef- 
fect becomes the prevailing one. A comparison of these results with those of [3] affords an 
estimate of the threshold height hth = Z7 in 50 Y (where Y is the activity of the source in 
the units used in [2, 8]). The results of [8] refer only to one concrete value of the source 
activity and its height, so that additional calculations are required in order to determine 
the dependence of the results on these parameters. An interesting possibility is the deriva- 
tion of an analytical expression for the time dependence of.the radiated field by approximate 
solution of the Maxwell equations. Such a possibility, obviously, would significantly facil- 
itate the analysis of the results. 

The present article is devoted to these two problems. 

2. The statement of the problem of calculating the fields is essentially the same as 
that described in [8], except that the algorithm of [3, 6] is used for numerical integration 
of the Maxwell equations. Certain disparities in the results can be attributed to differences 
in the constants used. Those given in [8] (for example, the mobility and lifetime of secon- 
dary electrons, their number generated by one Compton electron, etc.) are taken below to be 
the same as in [8]. The values of certain constants are not given in [8]. For example, the 
space scale H of the density variation of the atmosphere and, accordingly, the density of the 
air at the source height is left out, as is the scale used to reduce the time to dlmensionl 
form in the problem and, accordingly, the gamma-output duration 24. Below, the inhomogeneity 
scale of the atmosphere H is taken equal to 6.6 km, and the distance r end time t are reduced 
to dimensionless form relative to the mean free path of the gamma quanta 17 at zero height and 
to the ratio I7/c, respectively. In these units, the quantity A is chosen equal to 0.25. 
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Fig. i 

The quantity ~ denotes the relative air density at the source height. The values of the 
fields are in cgs esu. 

Figure 1 gives the time variations of the field components at various distances from the 
source (Y = i, ~ = 0.7), complementing the results of [8]: i) Er; 2) E@; 3) B~; a) distance 
r = 0.i k m; b) 0.2 km; c) 0.5 km; d) 1 km; e) 2.5 km; f) 5 km. It follows from these results 
that in the current zone (to r ~ 0.5 km) the radial electric field Er in a layer of thickness 
-2A is near the leading edge of the gamma stream, where the currents and conductivity of the air 
are large, rapidly attain their limiting values (which differ at different distances), and re- 
mains approximately constant. Outside this layer the field varies due to induction effects. 
The transverse electric field Ej at these distances in the conducting layer near the leading 
edge is considerably smaller than the radial field, while in the outer region, where induc- 
tion effects are appreciable, it is commensurate with the radial field. Outside the current 
zone (at distances 51 km) induction effects prevail; here a radiation fleld is formed in which 
By ~ E~, but the value of the radial field is still commensurate with the transverse field. 
At distances r ~ 5 km the wave zone begins, where the radial electric field is much smaller 
than the transverse and essentially the radiation field has evolved. 

Figure 2 illustrates the influence of variation of the source activity; these results 
are plotted for Y = i0, ~ = 0.7, and the nomenclature of the curves is the same as in Fig. i. 
The amplitude of the radial field in the current layer is practically independent of Y, but, 
as should be expected, the size of the current zone increases with Y. Thus, arr = 1 km the 
amplitude of E r is considerably greater than the amplitudes of the fields E9 and B~ for Y = 
i0, whereas for Y = 1 the field amplitudes are commensurate at this distance. The evolution 
of the wave field takes place at greater distances for Y - i0 than for Y = i. Thus, at r = 5 
km the differences in the time variations of E~ and B~ are practically indiscernible if Y = 1, 
but for Y = 10 they are appreciable. The values of the fields Eo and B~ increase with Y, 
being roughly proportional to Y at small distances (less than r - 1 km). 

With an increase in the source height the amplitude of the radial field in the current 
layer near the leading edge decreases (approximately as ~a), and the amplltudes of the induc- 
tion fields vary only slightly. The dimensions of the current zones and the time scales of 
the variation of the induction fields increase approximately as ~-x. These properties of the 
generated electric fleld are illustrated in Fig. 3 (Y ffi 10, ~ = 0.5, same nomenclature as in 
Fig. i). 
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Fig. 2 

The ampli=ude--~ime curves of =he fields radla=ed a= a distance of i00 km are shown in 
Fig. 4: i) Y = i, ~ = 0.7; 2) Y = i0, ~ = 0.7; 3) Y = i0, ~ = 0.5. It follows from =hese 
data that increasing =he source height (while keeping =he same =oral quantum yield) does not 
alter the field in the wave signal, but does increase (as ~-t) the time scales of the field 
variations. An increase in =he =oral quantum yield causes both =he field and the charac=er- 
istlc rime scales of the signal =o increase. 

3. We now discuss briefly =he behavior of the fields in the current zone near the lead- 
ing edge of =he gamma stream. In this region the spatial variations of =he fields are char- 
acterized by two scales, one along =he leading edge and one perpendicular to it. The longi- 
tudinal scale L coincides with =he actual extent of the current zone. In the dlrec=ion per- 
pendicular =o =he leading edge the field variations are determined by =he conductivity u and 
the "thickness" of the current layer, i.e., by the product of the gamma emission rime and =he 
speed of llgh= c. I= can be assumed in regard to =he motion of the leading edge with the 
speed of light =ha= near it all quantities depend only on the "local" time z = = -- r/c, so 
=hat only =he derivatives with respect =o z remain in =he equations. For example, the curl 
of the mange=ic field B can be written in =he approximate form (rot = curl): 

r o t B =  •  , ~ r [ n •  c ~ (3.1) 

(n i s  t he  u n i t  v e c t o r  normal  =o the  l e a d i n g  e d g e ) .  We use  t h i s  f a c t  =o deduce  =he f o l l o w i n g  
r e l a t i o n  f rom t h e  Maxwell e q u a t i o n s :  

O (n,E) + 4 ~ ( 6 E +  jd  = 0, ( 3 . 2 )  n ~  

which after scalar multiplication by n yields =he equation for =he radial electric field 

aE,/O~ + 4a(~E~ + it) = 0. (3 .3)  

Equation (3.3) is strictly fulfilled only for fields excited by spherlcally symmetric currents 
in a homogeneous medium, but it can be used for an approximate determination of E r when ~ and 
Jc depend, e.g., on =he polar angle 6, as in the investigated case of fields in an inhomogene- 
ous atmosphere. Assuming, as in [8], =ha= =he effects of inhomogenei=y are small, i.e., 
writing 

J c = ] o (  r' t) q- i t (r ,  t) cos6,  6 = ao(r, t) q-61(r, t) cos6, Er = Eo(r, t ) + E 1 ( r ,  t) cos6 ,  
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where jl << jo, ox << Go, Ex << Eo, for the determination of the fields Eo and Ex we have the 
system of equations 

OEo/OX + 4g(aoEo -6 ]o) = 0, 0Edo~ -6 4~ZoE x -6 4~(~1E o -6 ]1) = 0, ( 3 . 4 )  

which are solved successively to obtain 

E o = - - 4 ~  .I lo (~') exp - - 4 ~  . e o (X") dg" d ' ( ,  
0 "at 

( 3 . 5 )  

0 "lff 

At small distances, where OoTo >> i, we can estimate the integrals by the Laplace method: 

Eo ~-, --Jo ('0/~o ( %  E1 ,~ [ ~  ('c) lo ('c) - c% ('0 h ('01/Cro ~ (% ( 3 . 6 )  

If (following [8]) we assume that the conductivity of the air is electronic and that the con- 
duc~ion electrons themselves, being generated in events of interaction between Compton elec- 
trons and air molecules, vanish, becoming attached to oxygen molecules in a time ~y-x (the 
capture rate y ~ 10 -s sec -~ at zero height and varies as $= with increasing height), then with 
error ~(yTo)-* the time dependence of the functions Jo, j,, ~o, and ox can be regarded as 
identical, implying constancy (in time) of the fields E, and Eo in the current zone near the 
leading edge of the gamma stream. This result is consistent with numerical integration (see 
Figs. 1-3). 

Within the context of the stated assumptions the value of the field Eo near the source 
does not depend on the distance [Eo (r = 0) = E, = 1 cgs esu at zero height and varies as $2 
with increasing height], while the field E, varies with distance according to the law E: = 
E, (2r/H). 

At large distances from the source the inequality OoTo >> 1 no longer holds, and the 
fields Eo and E, cannot grow to their limiting values (3.6) during the active period of the 
gamma stream. In this region we obtain from (3.5) 

Eo(r, g - +  oo) = E , [ i  - -  exp(--Y.)] ,  

El(r, �9 ~ ~ )  = E , ( 2 r / H ) { [ i  - -  e x p ( - - Z ) ]  - -  [(r/4l~) + IlY. exp ( - -E)} ,  
oo 

~, (r) - -  4n ] o" o (~, r) dr. 
0 
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If we attempt to determine E e from Eq. (3.2), then, taking the vector product of all terms 
with n, we obtain [Q x E] = 0. This result indicates that E~ << E r in the current zone. This 
conclusion is also consistent with the results of numerical integration. 

4. We now turn our attention to the radiated field. Its determination does not present 
any difficulties if the radiating currents are known. These can be interpreted as the Compton 
electron currents, compensated by the radial induction currents, and the transverse conduction 
currents. We show that the latter play an insignificant role and can be neglected. We con- 
sider the ~ component of one of the Maxwell equations: 

and the ~ component of the other: 

I OE . ~ . ( 6 E + j )  r o t  B = -g-.-o-7 -i- 

OE o 
Ox 

whence we infer the relation 

r o t  E = t a B  
e O r "  

If we replace the curls of the fields E and I in the region near the leading edge by 
approximate expressions analogous to (3.1), then for E9 and Be we obtain a homogeneous system 
of equations. Since E~ = B~ = 0 at the leading edge of the current layer, the problem of de- 
termining E~ and B ~ does not have any ~olutions other than the null solution. In the next- 
higher approximation we keep the term (l/r) (~Er/%O) in the expression for curl E. We obtain 

OB~ OB~ OE 0 e 
.n L- 4 ~ 6 E o  = O, OT O~ -}" r Er  = O, 

t 4=--Ec Eo + -7" E~ = 0. 

In the current zone 4~0 >> c/r, and so E e << Er (cf. Sec. 3), but it also follows from this 
result that the transverse conduction currents associated with E, are considerably smaller 
than the radial conduction currants associated with E r. These currents are commensurate in 
the region where the conductivity is small. In this region , however, the actual currents 
are also small and can therefore be neglected. On the basis of this fact we take the radi- 
ating currents to be simply Jr -= (J* + olEo + ooE,) cos ~, where, as was explained in Sec. 
3, in the region where they are large the field E, can be determined from the second equation 
(3.4), i.e., we can put 

t OEI (r, ~) 
J r =  4~t o ~  c o s ~  (4.1) 

and specify Ex(r, T) according to (3.5). 

The vector potential A of the wave field is determined from the known radiating currents 
by means of the integral 

! y d V ] v ( r  , t - -  R . ( r ,n )~  
A = ~ . T - -  - - 7 - - } '  
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in which R is the distance to the detection point, n is the unit vector in the direction of 
that point, and Jv is the vertical component of the radiating currents. In a spherical co- 
ordinate system (r, ~, ~) with the z (- cos ~) axis directed vertlcally upward, dV - rmdr sin 

d~ d~, Jv = Jr cos ~, (E, n) - r sln~ cos ~, If the direction of n Is horizontal and the 
angle ~ is measured from it. Knowing from (4.1) that the function Jr depends on r and t -- 
r/c, we can write the vector potential In the form 

A = - ~  r'dr ~ - -  + ( t - - , / t _ _ ~ * c o s ~ ) ] ,  
0 --i 0 

w h e r e  x = c o s  ~ ;  T = t - -  R c .  I f  we  r e p l a c e  t h e  v a r i a b l e  ~ b y  T '  = T - -  r ( 1  - -  1 /1- : r -~- - r  2 c o s  ~ ) / c ,  

t h e n  a f t e r  a p p r o p r i a t e  m a n t p u l a t i o n s w e  o b t a i n  

A=2-~ ~ d~ 'c (~ -~ ' )  d r ( t - - C ( ' r T ' ) )  ](r'~')' ( 4 . 2 )  
o e ( ~ - ~ ' ) ~  

] (r, T') ~-- ]r (x, r, ~')/x. 

The subsequent analysis of the integral (4.2) is exactly analogous to that in [4]. In par- 
ticular, for T < To the function A(T) Is determined by the time dependence of the radiating 
currents, and for T > To it is determined by the spatial dependence of the time-integrated 
characteristics of the radiating currents, i.e., if the singular leading-edge properties of 
the signal can be disregarded, then in place of (4.2) we can calculate the potential accord- 
ing to the expression 

A = -ff c~ dr (t c~/2r). ] (r, ~') d~'~ ( 4 . 3 )  
c ~  0 

which with regard for (4.1) can be written In the form 

= __c% f dr (t - -  cT/2~ E1 (r, ~'--~- oo), A 2R , 

where E~(r, T') is given by expression (3.6). Differentiating with respect to T and substi- 
tuting the function E,, we obtain an equation for the time dependence of the field in the wave 
zone: 

1 S E = E ,  ~-H dr ( r "  c~) {[t - -  exp ( - -  N)] - -  [(r/4l~) -- t1 Z exp ( - -  ~)}. ( 4 . 4 )  
e~/2 

Within the context of the above-stated (see Sec. 3) assumptions regarding the nature and tlme 
dependence of the conductivity of the air the quantity E Is specified by the expression 

= e~vNexp(--s) 
~ s* , s-~-rllv, ( 4 . 5 )  

in which N in the total yield of gamma quanta and the rest of the notation is the same as in 
[8]. It is essential to note that the coefficients in front of the factor s -a exp (--s), which 
describes the spatial dependence of Z, does not depend on the height. If the variable r is 
made dimensionless by reference to 17, then the factor preceding the integral wlth respect to 
s will have the form E,~/RH, i.e., will also be independent of ~. Consequently, the fleld E 
as a function of T = cT/Iy does not depend on the height, while as a function of T it"stretches" 
with increasing height as ~-*, without changing its actual value. This result is fully com- 
patible with Sec. 3 (see Fig. 4). The integral (4.4) with the function Z given by (4.5) has 
been computed numerically for various values of Y. The results are given in Fig. 5 (field in 
cgs esu at a distance of 100 km). Inasmuch as the transformation of the field--time curve with 
increasing height is reducible to "stretching" of the scale in proportion to ~-*, the curves 
in Fig. 5 refer to a single value of the parameter ~ = 0.5; the curves are numbered as fol- 
lows: i) Y = i; 2) i0; 3) i00. Curve 2 represents the time dependence of the radiated field 
for the same case as curve 3 in Fig. 4. A comparison of these curves shows that, exclusive 
of the singular features of the behavior of the field at the leadlng edge (for m < 0.5 user), 
the approximate expression (4.4) fully satisfactorily describes the radiated field. The 
discrepancies between the results for small values of m are natural insofar as the transition 
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from (4.2) to (4.3) is equivalent to neglecting the leading-edge singularities of the behavior 
of the radiated field. 

The observed agreement of the results implies that the above-described approximate method 
is applicable to calculations of the configuration and amplitudes of the wave fields and the 
analysis of their variations with the parameters of the problem. 
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